Tracking Functional Outcomes throughout the Continuum of Acute and Postacute Rehabilitative Care

Robert D. Rondinelli, MD, PhD
Medical Director Rehabilitation Services
Unity Point Health, Des Moines

Paulette Niewczyk, MPH, PhD
Director of Research, UDSMR

K. Danielle Hahn, BS
Clinical Research Coordinator
Unity Point Health, Des Moines

Maggie DiVita, MS, PhD
Senior Research Analyst, UDSMR

Disclosures

• Robert Rondinelli, MD, PhD: None
• Paulette Niewczyk, MPH, PhD: Directly employed by UDSMR, the developer of the FIM® instrument and its derivatives
• Maggie DiVita, MS, PhD: Directly employed by UDSMR, the developer of the FIM® instrument and its derivatives
• K. Danielle Hahn, BS: None
Introduction

- There have been many recent changes to health-care policy—and even more proposed changes—that have major implications on the medical rehabilitation field
- Various payment reform ideas have been proposed, some of which are bundled payments, site-neutral payments, and value-based purchasing

The IMPACT Act

- The Improving Medicare Post-Acute Care Transformation (IMPACT) Act requires the collection of standardized functional data in all postacute care venues for the following purposes:
 - Comparing quality across PAC settings
 - Improving hospital and PAC discharge planning
 - Using the collected data to reform PAC payments (via site-neutral or bundled payments, for example) while ensuring continued beneficiary access to the most appropriate setting of care
The IMPACT ACT: Comparing Quality across PAC Settings

- The collection of standardized functional data in all postacute care venues to compare quality across PAC settings will not be meaningful without an established severity-adjustment method
- Determining the level of severity is critical
 - Postacute care venues treat different types of impairments
 - Postacute care venues treat similar conditions with varying levels of illness severity
 - Functionality metrics can help estimate severity
- Determining quality requires a parsimonious outcome metric that measures the same thing across various PAC venues

The IMPACT Act: Improving Hospital and PAC Discharge Planning

- The majority of patients are admitted to postacute care directly from an acute hospital
- The acute hospital is the start of the “continuum of care”
- A standardized functional data collection metric for acute care is important because the appropriate setting of postacute care is often determined in the acute care hospital
Research Purpose

- To measure patient function using the AcuteFIM® instrument, a standardized instrument in the acute hospital
- To track patient function, using the same items, across multiple postacute care trajectories to determine outcomes of care
- To determine whether the AcuteFIM® instrument, when administered in the acute hospital, can aid in predicting discharge destination and postacute care placement

UPH-DM Continuum of Care
Additional Components

- UPH-DM
 - Multispecialty physician group
 - Acute care hospital
 - Inpatient rehabilitation facility (distinct part; 23 beds)
 - Transitional care unit (16 beds)
 - Long-term acute care hospital (LTACH) services
 - Cedar Rapids
 - “Affiliated” skilled nursing facilities (SNFs)
 - Shared medical direction from UPH-DM’s physician group

PAC Triage Decisions
Ideal

- Simple and predictable pathway for postacute care that is initiated on the acute side and customized to the patient’s needs

Acute Care Programmatic Integration at UPH-DM

- Stroke certification by Det Norske Veritas (DNV)
 - Fully integrated acute stroke care from admission through discharge
 - Total stroke admissions > 200 patients/year
Postacute Care Programmatic Integration at UPH-DM

- Can be accomplished by creation of a virtual tracking of functional outcomes within and between various PAC trajectories using the common metrics of the FIM® instrument and its derivatives

Uniform Data System for Medical Rehabilitation (UDSMR)

- Simplified derivatives of the FIM® instrument were developed to be used in acute and postacute care venues
- The AcuteFIM® instrument and the SigmaFIM™ instrument are FIM® derivatives
 - Simple, function-based, common assessment methodology
 - Patients can be assessed on the same items throughout the care continuum
Study Design and Population

- Prospective cohort study
- Adult acute ischemic stroke patients admitted to Iowa Methodist Medical Center
 - Rolling enrollment
- Participants recruited within seventy-two hours after acute hospital admission

Methods

- Identification and tracking of adult ischemic stroke patients
- CMS criteria were used to implement patient screening and triage within and between acute and postacute venues
- Administer AcuteFIM® instrument to all acutely enrolled patients, then administer the IRF-PAI and/or the SigmaFIM™ instrument to appropriate patients admitted to IRF or TCU/SNF-level PAC from the acute hospital to determine functional outcomes, then follow up with all patients enrolled at thirty to ninety days postdischarge from the last setting of care
- Compare functional outcomes across various postacute pathways
Methods

• Identify potential patient subjects from “stroke alert” process at IMMC
• Daily review of cerebral CT and MRI results reported at IMMC for adult patients diagnosed with acute ischemic CVA
• Rehab coordinator visits identified potential patient to obtain informed consent (by patient or legal proxy)

• Upon signed consent, administer AcuteFIM® instrument within seventy-two hours of admission to the acute hospital
• Follow patients as they transition throughout the continuum
• Track demographic, medical, and functional data
Acute Discharge Trajectories

Study Variables

- Functional
 - AcuteFIM® instrument
 - FIM® instrument
 - SigmaFIM™ instrument
- Sociodemographic
 - Age
 - Gender
 - Race/ethnicity
 - Marital status
 - Prehospital living situation
 - Primary payer
Study Variables

- Medical
 - Acute DRG
 - Acute length of stay
 - Acute discharge destination
 - Postacute length of stay
 - Postacute discharge destination
 - Acute rehospitalization
 - Functional change from acute to postacute
 - Functional change from postacute discharge to thirty days follow-up

The FIM® Instrument

- Thirteen motor items and five cognitive items
- Seven-level rating system
 - 1 = complete dependence
 - 7 = complete independence
- Training and mastery exam
- Used primarily in inpatient rehabilitation to assess function and demonstrate the outcomes of intensive therapy
- Embedded in the Inpatient Rehabilitation Patient Assessment Instrument (IRF-PAI)
AcuteFIM® Instrument

- Four motor items and two cognitive items
 - Eating, Grooming, Bowel Mgmt., Toilet Transfer
 - Expression, Memory
- Three-level rating system
 - A = independent
 - B = modified independence
 - C = dependent
- Takes five minutes to administer
 - Extensive training or a mastery exam not required
- Produces a projected FIM® rating
- Useful for discharge planning, patient and family communication of care needs upon discharge, and preadmission information for placement in IRF or SNF

SigmaFIM™ Instrument

- Thirteen motor items and five cognitive items
- Three-level rating system (A, B, C)
- Takes approximately ten minutes to administer
 - Extensive training or a mastery exam not required
- Intended for use in:
 - Outpatient facilities
 - Less-rehabilitation-intensive SNFs
 - LTAC facilities
 - Home health
- Provides a projected FIM® rating and can estimate patient function
Data Analysis

- **Study characteristics:** Demographic, medical, and rehabilitation variables across the postacute care trajectories
- Comparison of MS-DRG and AcuteFIM® instrument
- Incidence of readmissions (thirty days, ninety days, all readmissions) by postacute care trajectory
- Logistic regression modeling used to calculate odds ratio (OR) and 95% confidence interval (95% CI) for association between the total AcuteFIM® rating and discharge to community, and between trajectory and acute readmission

Results
Characteristics of Study Population

- Total sample $N = 234$
- Average age = 69.5
- Average acute LOS = 3.5
- 51.5% male ($n = 121$)
- 63.8% Medicare ($n = 150$)
- 97.4% white ($n = 229$)
- Discharge destination from acute:
 - 28.6% home with no services ($n = 67$)
 - 17.0% SNF ($n = 40$)
 - 49.4% IRF ($n = 112$)

<table>
<thead>
<tr>
<th></th>
<th>Home with no care</th>
<th>IRF</th>
<th>SNF</th>
<th>Home with HH</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cases</td>
<td>67</td>
<td>112</td>
<td>40</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>AcuteFIM® Total (Mean, SD)</td>
<td>92.5 (21.9)</td>
<td>66.5 (19.3)</td>
<td>66.8 (22.9)</td>
<td>97.7 (14.7)</td>
<td>69.8 (23.8)</td>
</tr>
<tr>
<td>Age (Mean, SD)</td>
<td>62.5 (14.5)</td>
<td>70.5 (13.3)</td>
<td>76.6 (9.9)</td>
<td>72.1 (11.5)</td>
<td>76.7 (16.8)</td>
</tr>
<tr>
<td>Acute Care LOS (Mean, SD)</td>
<td>3.0 (3.3)</td>
<td>3.1 (4.6)</td>
<td>6.3 (6.3)</td>
<td>0.67 (1.1)</td>
<td>2.6 (3.4)</td>
</tr>
<tr>
<td>Gender (N, %)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Male</td>
<td>37 (55.2)</td>
<td>64 (57.1)</td>
<td>15 (37.5)</td>
<td>3 (33.3)</td>
<td>2 (33.3)</td>
</tr>
<tr>
<td>Female</td>
<td>30 (44.8)</td>
<td>48 (42.9)</td>
<td>25 (62.5)</td>
<td>6 (66.7)</td>
<td>4 (66.7)</td>
</tr>
<tr>
<td>Race (N, %)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>White</td>
<td>66 (98.5)</td>
<td>109 (97.3)</td>
<td>40 (100)</td>
<td>8 (88.9)</td>
<td>6 (100)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (1.5)</td>
<td>3 (2.7)</td>
<td>-</td>
<td>1 (11.1)</td>
<td>-</td>
</tr>
<tr>
<td>Married (N, %) missing n = 91</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Married</td>
<td>25 (62.5)</td>
<td>39 (57.4)</td>
<td>11 (39.3)</td>
<td>1 (33.3)</td>
<td>3 (75.0)</td>
</tr>
<tr>
<td>Widowed/separated/ divorced</td>
<td>11 (27.5)</td>
<td>18 (26.5)</td>
<td>15 (53.6)</td>
<td>2 (66.7)</td>
<td>1 (25.0)</td>
</tr>
<tr>
<td>Never married</td>
<td>4 (10.0)</td>
<td>10 (14.7)</td>
<td>2 (7.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Primary Payer (N, %)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Medicare</td>
<td>29 (43.3)</td>
<td>76 (67.9)</td>
<td>36 (90.0)</td>
<td>5 (55.6)</td>
<td>4 (66.7)</td>
</tr>
<tr>
<td>Commercial</td>
<td>21 (31.3)</td>
<td>20 (17.9)</td>
<td>2 (5.0)</td>
<td>2 (22.2)</td>
<td>2 (33.3)</td>
</tr>
<tr>
<td>Other</td>
<td>17 (25.4)</td>
<td>16 (14.3)</td>
<td>2 (5.0)</td>
<td>2 (22.2)</td>
<td>-</td>
</tr>
</tbody>
</table>
Results: AcuteFIM® Correlations

<table>
<thead>
<tr>
<th>Category</th>
<th>n</th>
<th>Correlation with AcuteFIM® Instrument</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute length of stay</td>
<td>234</td>
<td>-0.259</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Admission FIM® total</td>
<td>110</td>
<td>0.643</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Discharge FIM® total</td>
<td>104</td>
<td>0.494</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Admission SigmaFIM™ total</td>
<td>74</td>
<td>0.566</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Follow-up FIM® total</td>
<td>70</td>
<td>0.355</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Association of AcuteFIM® Instrument and Discharge to the Community*

Odds Ratio (OR) interpretation:
- OR = 1: null; no difference
- OR >1: increased odds/likelihood

C-Statistic Interpretation
- 0.5: no better than predicting an outcome than random chance.
- > 0.7 indicates a good model.
- > 0.8 indicates a strong model.

![Graph showing odds ratio and C-statistic](image)

C-Statistic: 0.882

*Model is also adjusted for age
MS-DRG Definitions

- **MS-DRG 64**: INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W MCC
 - N = 33 (14.5%)
 - Average AcuteFIM® total = 64.0
- **MS-DRG 65**: INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W CC OR TPA IN 24 HRS
 - N = 105 (46.1%)
 - Average AcuteFIM® total = 73.0
- **MS-DRG 66**: INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION W/O CC/MCC
 - N = 51 (22.4%)
 - Average AcuteFIM® total = 88.2
- **Other MS-DRG** Group:
 - N = 39 (17.1%)
 - Average AcuteFIM® total = 69.6

Association of MS-DRG and Discharge to the Community*

*Model is also adjusted for age

Other MS-DRG was the only significant MS-DRG category:
95% CI 1.71 – 13.18

C-Statistic = 0.728
Readmissions to Acute Care

<table>
<thead>
<tr>
<th>Readmission to Acute/ED within 30 Days</th>
<th>Readmission n</th>
<th>Total n</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After community discharge</td>
<td>4</td>
<td>67</td>
<td>6.0%</td>
</tr>
<tr>
<td>After IRF discharge</td>
<td>17</td>
<td>112</td>
<td>15.2%</td>
</tr>
<tr>
<td>After SNF discharge</td>
<td>9</td>
<td>40</td>
<td>22.5%</td>
</tr>
<tr>
<td>Other discharge</td>
<td>3</td>
<td>15</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Readmission to Acute/ED within 90 Days</th>
<th>Readmission n</th>
<th>Total n</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After community discharge</td>
<td>5</td>
<td>67</td>
<td>7.5%</td>
</tr>
<tr>
<td>After IRF discharge</td>
<td>12</td>
<td>112</td>
<td>10.7%</td>
</tr>
<tr>
<td>After SNF discharge</td>
<td>5</td>
<td>40</td>
<td>12.5%</td>
</tr>
<tr>
<td>Other discharge</td>
<td>2</td>
<td>15</td>
<td>13.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All Readmissions to Acute/ED (30 and 90 days)</th>
<th>Readmission n</th>
<th>Total n</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After community discharge</td>
<td>8</td>
<td>67</td>
<td>11.9%</td>
</tr>
<tr>
<td>After IRF discharge</td>
<td>24</td>
<td>112</td>
<td>21.4%</td>
</tr>
<tr>
<td>After SNF discharge</td>
<td>11</td>
<td>40</td>
<td>27.5%</td>
</tr>
<tr>
<td>Other discharge</td>
<td>5</td>
<td>15</td>
<td>33.3%</td>
</tr>
</tbody>
</table>

Association of PAC Trajectory and 30-Day Readmissions

Discharge to SNF (95% CI 1.5 - 25.4) and Discharge to Other (95% CI: 1.0 - 36.6) were significant.

C-Statistic 0.750

Model is also adjusted for payer source and dyslipidemia.

- Community: 1.00
- IRF: 3.22
- SNF*: 6.2
- Other*: 6.15
Results Summary

- The AcuteFIM® instrument was significantly correlated with acute LOS and the postacute functional instruments (FIM® instrument and SigmaFIM™ instrument)
- The AcuteFIM® score was a better predictor of discharge from acute to community than MS-DRG
- There was a significantly increased likelihood of acute readmission for patients discharged to a SNF, home health, or other postacute care setting as opposed to those discharged to an IRF or directly to home

Overall Conclusions

- The AcuteFIM® instrument was predictive of discharge trajectory from the acute hospital
- Derivatives based on the FIM® instrument can be captured throughout all PAC trajectories
- Derivatives based on the FIM® instrument may be the appropriate tool to collect the standardized functional data, as required by the IMPACT Act
- Future research will expand the impairment groups included and incorporate additional facilities in other geographic areas